Projects

"IDEAS is allowing the Graduate School to pursue important analytic questions that we would never be able to explore unassisted. My office provided data in its rawest form, and IDEAS has run with it in ways I couldn’t have imagined. It’s a real tour-de-force. As a strong believer in the importance of data for strategic decision making, I am extremely grateful to IDEAS for making this tremendous resource available to us."
 Sarah-Jane Leslie, Dean of The Graduate School

Graduate Admissions

How can predictive analytics enhance the Economics department graduate student admissions process?
  • Employed machine learning to estimate the likelihood of post-graduate employment success of past doctoral applicants using data from applications prior to 2011
  • Identified current applicants with highest chance of future employment success based on predicted probability calculations

UP NEXT: Determine if more advanced predictive analytics and new types of data can significantly improve the selection process

How can we combine data to uncover important trends in graduate admissions across the University?
  • Extracted data on doctoral and master’s-level graduate applications from various administrative systems and merged it with publicly available higher education data (e.g., IPEDS, U.S. News rankings)
  • Used machine learning to highlight and analyze trends and key predictors of various outcomes

UP NEXT: Use predictive analytics to understand variations in graduate admission processes across the University.

Alumni Outcomes

How can we validate academic employment information about graduate alumni more effectively?
  • Collected information from the web on current employment for a select list of alumni
  • Identified which alumni are currently employed as faculty at R1 or R2 institutions
  • Matched this subset with records in faculty database developed by IDEAS to further validate employment information

UP NEXT: Develop additional machine learning techniques and identify other data sources to improve the graduate school’s ability to track alumni employment outcomes.

What are effective ways to collect and compile data on academic employment outcomes?
  • Surveyed the landscape of available academic employment outcomes data and classified its use by institutions and researchers
  • Developed a plan for systematically identifying, collecting, and formatting data on faculty and academic staff in universities and colleges nationwide
  • Conducted a pilot to test our approach for data collection

UP NEXT: Compile data on faculty and academic staff at select institutions and match to existing student data sets to better understand academic career outcomes.

Analytics in Higher Ed

How can we collect better data on corporate and foundation funding for research?
  • Conduct exploratory analysis of publicly available data on funding for faculty
  • Pilot a data mining project to compare internal data about specific corporate and foundation funding for Princeton faculty with external public information

UP NEXT:  Evaluate the feasibility of expanding data mining techniques to collect external data about faculty funding